
Numerical Analysis I
Math 373

Surya Teja Gavva
Rutgers University

July 16 2018

Polynomial Interpolation

Problem 1: Can you approximate a complicated function with
simpler functions like polynomials?
Problem 2: Can you find polynomials that interpolate some data?

Polynomial Approximation

Weierstrass Approximation:
Given any continuous function f : [a, b]→ R and ε > 0 there exists
a polynomial p(x) such that |f (x)− p(x)| < ε for all x ∈ [a, b].

Can you find some explicit approximations?

Polynomial Approximation

Weierstrass Approximation:
Given any continuous function f : [a, b]→ R and ε > 0 there exists
a polynomial p(x) such that |f (x)− p(x)| < ε for all x ∈ [a, b].

Can you find some explicit approximations?

Taylor approximations

f (x) = f (x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)2+· · ·+ f (n)(x0)

n!
(x−x0)n

+E (x , x0, f)

Where

E (x , x0, f) =
f (n)(ξx)

n!
(x − x0)n+1, ξx ∈ (x0, x)

This approximation is only good for x very close to x0, We need to
use more information about f (x) than just the local information at
x0

Interpolation

Given a function f (x), find a polynomial of least degree such that
p(xi) = f (xi) for i = 0 to n.

Lagrange Interpolation

Idea: Find polynomials Lk(x) such that Lk(xk) = 1 and Lk(xj) = 0
for j 6= k Then

∑n
k=0 f (xk)Lk(x) satisfies p(xi) = f (xi)–

When you plug in xi only Li (xi) term is non-zero and that term
gives f (xi).1 = f (xi)

Lagrange Interpolation

Lk(x) =
∏
j 6=k

(x − xj)

(xk − xj)

=
(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

Note that Lk(xk) = 1, Lk(xj) = 0 if j 6= k

Lagrange Interpolation: Error

Error: We want to understand the error in the approximation ie.,
|f (x)− Pn(x)| as n increases.
Pn(x) depends on the choice of the interpolating points {xi}, so
the error depends on this choice and the function f
If f is differentiable n + 1 times, we have the following estimate for
the error.

|f (x)− Pn(x)| ≤ | f
(n+1)(ηx)

(n + 1)!
(x − x0)(x − x1) · · · (x − xn)|

Lagrange Interpolation: Error

Note that the error depends on the the ”regularity” of the function
and the the interpolation points {xi}
Question: Does this error go to zero as n→∞?
Answer: NO. See Runge Phenomenon

Runge Phenomenon

Consider the function f (x) = 1
1+25x2

on [−1, 1]

Let xi = −1 + 2i
n be the equidistant points.

The Lagrange interpolation Pn(x) oscillates a lot at the ends of the
interval and takes very large values.
Hence the error in approximation diverges as n tends to infinity.

Runge Phenomenon

The interpolations didnt converge to the function in the above
example. Can we change the point {xi} and get the convergence?
Yes. Special choice of points can make the expression
|(x − x0)(x − x1) · · · (x − xn)| in the error not so big and can give
convergence.

Chebyshev Points

In the previous example , equidistant points didn’t work and the
function diverged a lot at the endpoints. To rectify this we may
need points with more density at the end points.
Chebyshev points are a really good choice. xk = cos(kπn)
They have the property that

sup
x∈[−1,1]

|(x − x0)(x − x1) · · · (x − xn)| =
1

2n
≤ sup

x∈[−1,1]
|p(x)|

for any monic polynomial p(x) of degree n + 1
For instance, for equidistant points xi ,
|(x − x0)(x − x1) · · · (x − xn)| ∼ 1

1.355n >
1
2n

Chebyshev Points

In fact, for the above Runge function f (x) = 1
1+25x2

on [−1, 1], the
Lagrange interpolations Pn(x) at the Chebyshev nodes converge
uniformly to the function f (x)

Chebyshev Points

Are Chebyshev nodes good for all continuous functions? Do the
interpolations at Chebyshev points converge to the function?
Yes, if the function is differentiable.
But for any choice of interpolation points, there are continuous
functions (may not be differentiable) for which Pn(x) don’t
converge.

Lagrange Interpolation

How do we compute these polynomials Pn(x)
Can we compute Pn+1(x) from Pn(x)
In the form that we have, computation of Pn+1(x) requires
computing from scratch again even if we have computed Pn(x)
What should we do?

Neville’s method

We can use the following relations between interpolations at
various subsets of points to compute values of larger degree
interpolations from smaller degree ones.
Let Pk1,k2,··· ,kr be the Lagrange interpolation of f (x) at
xk1 , xk2 , · · · xkr

Neville’s method

Pk is the degree zero/constant function f (xk) Pi ,j is the linear
interpolation at xi , xj

Pi ,j(x) =
(x − xi)f (xj)− (x − xj)f (xi)

xj − xi

We have the following formula:

P0,1,2,..,n(x) =
(x − x0)P1,2,..,n − (x − xn)P0,1,2,..,n−1(x)

xn − x0

Neville’s method

We compute values of higher degree interpolation by following
iterative process:

x0 P0

P0,1

x1 P1 P0,1,2

P1,2 P0,1,2,3

x2 P2 P1,2,3

P2,3

x3 P3

Neville’s method

Neville’s method is good if you want to calculate individual values
but to compute the whole polynomial Pn iteratively involves a lot
of computation in this form. So we need some method to do
iterative computation of Pn from lower degree interpolations.

Newton Divided Difference method

We have

Pn(x) = Pn−1(x) + an(x − x0)(x − x1) · · · (x − xn−1)

Therefore

Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · ·

+an(x − x0)(x − x1) · · · (x − xn−1)

How do we find these an?

Newton Divided Difference method

Put x = x0, gives a0 = f (x0)

x = x1 gives f (x1) = f (x0) + a1(x1 − x0), so a1 = f (x1)−f (x0)
x1−x0

Let us denote f (x0) by f [x0] and f (x1)−f (x0)
x1−x0 by f [x0, x1]

x = x2 gives a2 = f [x1,x2]−f [x0,x1]
x2−x0

Denote this by f [x0, x1, x2]

In general

an = f [x0, x1, .., xn] =
f [x1, x2, x3, .., xn]− f [x0, x1, x2, .., xn−1]

xn − x0

Newton Divided Difference method

So we have

Pn(x) = f [x0] + f [x0, x1](x−x0) + f [x0, x1, x2](x−x0)(x−x1) + · · ·

+f [x0, x1, .., xn](x − x0)(x − x1) · · · (x − xn−1)

where

f [x0, x1, .., xn] =
f [x1, x2, x3, .., xn]− f [x0, x1, x2, .., xn−1]

xn − x0

are defined recursively starting with f [xi] = f (xi)

Divided Difference table

We compute values of divided differences by following iterative
process:

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3]
f [x2, x3]

x3 f [x3]

